Flushing CE Primary School

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their

 column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them. Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

	$\stackrel{0.6 \mathrm{~m}}{0.2 \mathrm{~m}}$	$\begin{aligned} & 0.6+0.2=0.8 \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \end{aligned}$	$\begin{aligned} & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 00 \\ +1 \cdot 25 \\ \hline 6 \cdot 25 \\ \hline \end{array}$	Add using a column method, ensuring that children understand the link with place value. Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \quad 2 \\ +0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline \end{array}$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \quad 0 \\ +0 \cdot 6 \quad 5 \\ \hline \end{array}$
Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.	Use column subtraction methods with exchange where required.

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

Subtracting decimals	Explore complements to a whole number by working in the context of length.$\begin{aligned} & 1 \mathrm{~m}-\square \mathrm{m}=\square \mathrm{m} \\ & 1-0.49=? \end{aligned}$	Use a place value grid to represent the stages of column subtraction, including exchanges where required.$5 \cdot 74-2 \cdot 25=?$			Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places.
		0	Tth	Hth O Tth Hth	
		OOOOO	-	©()$5 \cdot 74$ $-2 \cdot 2 \quad 5$	$\begin{array}{cccc} 0 & \cdot \text { Tth } & \text { Hth } & \text { Thth } \\ \hline 3 & \cdot q & 2 & 1 \end{array}$
		Exchange I ten	h for 10 hundredth	hs.	- $3 \cdot 750$
					\qquad
		Now subtract th	he 5 hundredths.		
		0 000	- Tth $-\odot \odot$ $-\odot \odot$		
		Now subtract the 2 tenths, then the 2 ones.			
Year 5 Multiplication					
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers.	Use image examples \square -10 $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$	s to explore of square num	examples and nonmbers.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?

	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . IIIIIIIIII	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$
Multiplying by multiples of 10 , 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000.	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$	Represent multiplications using place value equipment and add the 1 s , then 10 s , then 100 s , then $1,000 \mathrm{~s}$.	Use an area model and then add the parts.

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

	15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	$\begin{aligned} & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & 0 \quad 5 \quad 5 \quad 6 \\ & 7 \begin{array}{rrrr} 3 & 3 & { }^{3} q & 4 \\ 7 \end{array} \\ & 3,892 \div 7 \end{aligned}$ Use multiplication to check. $556 \times 7=?$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

Year 6 Addition			
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. Use bar model and number line representations to model addition in problem-solving and measure contexts.	Use column addition where mental methods are not efficient. Recognise common errors with column addition.$32,145+4,302=?$TTh Th H T O 3 2 1 4 5 + 4 3 0 2 3 6 4 4 7\quadTTh Th H T O 3 2 1 4 5\quad4 3 0 2 7 5 1 6 Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient.
Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$	Use a bar model to support thinking in addition problems.	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands

Flushing CE Primary School Calculation Policy

	This would be 5 more counters in the HTh place. So, the total is 2,911,301. $2,411,301+500,000=2,911,301$	I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. $\begin{array}{rrrr} \text { Th } & H & \text { T } & 0 \\ \hline 1{ }^{8} \not{ }^{1} \text { 14 } Z & 12 \\ -1 & 5 & 5 & 8 \\ \hline & 3 & 9 & 4 \\ \hline \end{array}$

Flushing CE Primary School Calculation Policy

		Th H T O 2 6 7 9 - 5 3 4 2 1 4 5 Use a bar model to represent calculations, including 'find the difference' with two bars as comparison. \square	Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. 950,000-150,000 That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $4 \times 2,345$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications.

Flushing CE Primary School Calculation Policy

	$2,345 \times 4$	Method 2 $3.0004 \times 2004 \times 204 \times 5$ $12,000+800+80+20=12,900$	Method 3 $12.000+800+80+20=12,900$ \qquad
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages.
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.	Use a known fact to generate families of related facts.

Flushing CE Primary School Calculation Policy

		Represent and compare methods using a bar model.	Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10. of ten tenths. $0.3 \times 10=?$ $0.3 \text { is } 3 \text { tenths. }$ 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$	Use knowledge of multiplying by 10,100 and 1,000 to multiply by multiples of 10,100 and 1,000. $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \end{aligned}$ $\begin{aligned} 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures.	Represent calculations on a place value grid.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0.3=1 \cdot 2 \\ & 4 \times 0.03=0.12 \\ & 20 \times 5=100 \\ & 20 \times 0.5=10 \\ & 20 \times 0.05=1 \end{aligned}$

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

Flushing CE Primary School Calculation Policy

	Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$	
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places.

